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INTRODUCTION 

The deep learning-based quantitative analysis of 1H-MRS brain spectra(DL-MRS) has been 

reported as a potential alternative to the nonlinear-least-squares-fitting(NLSF) approach.1-3 However, 

the previous studies used standard convolutional neural networks(CNNs) that do not provide 

uncertainty in the quantitative outcome,4-5 which is an important prerequisite for the clinical 

application of DL-MRS. In the case of the NLSF approach, the Cramor-Rao-lower-bounds(CRLB) 

have long been used as a measure of fitting precision.6  

Instead of a single set of optimized, deterministic weights in the standard CNNs, Bayesian 

convolutional neural networks(BCNNs) can be described in terms of the probability distribution of 

weights.5,7,8 The distribution of weights results in the distribution of network outputs and thus provides 

information about the uncertainty in the outputs. 

We investigated the BCNN with Monte Carlo dropout(MCDO) sampling4,5,8 as a means of 

simultaneously estimating metabolite content and uncertainty therein at 3.0T. Using simulated spectra, 

a BCNN was trained to predict a metabolite-only spectrum from a typical human brain spectrum.3 

Both metabolite content and corresponding uncertainty are estimated from MCDO sampled spectra. 

The performance of the proposed method was tested first on the simulated spectra and further on the 

modified in vivo spectra. 

 

METHODS 

Simulated brain spectra: Spectra were simulated as previously described.3 A total of 100,000 

spectra were simulated and randomly assigned into a training(N=80,000), a validation(N=10,000), and 

a test(N=10,000) sets. 



Modified in vivo spectra: The unmodified, original spectra were collected previously from 

the left frontal lobe(2×2×2cm3) of 5 healthy volunteers(30±3years) (PRESS9, TR/TE=2000/30ms, 

SW=2kHz, NSA=64, and 2048 data points).3 For each spectrum, the SNR was lowered and the 

linewidth was broadened simultaneously and gradually to generate 10 modified spectra with different 

SNR and linewidth combinations. Thus, 50 additional spectra were obtained from the 5 original data. 

BCNN: A BCNN was designed based on a ResNet10 and Bayesian-optimized12 in Matlab. A 

dropout layer that was rendered to operate at test time as well was placed after every activation layer. 

The heteroscedastic noise variance(𝜎𝑡
2) of input data was learned also in the training phase.8 The 

number of MCDO sampling(T) of 50 was determined that minimized the mean-absolute-percent-

error(MAPE) in the quantification of 17 metabolites. 

Prediction of metabolite content and corresponding uncertainty: Each individual 

metabolite content was estimated from the predictive mean spectrum by multiple regression using the 

metabolite basis set as previously described.3 For the estimation of the corresponding uncertainty, first, 

a two-standard deviation (2×SD) spectrum(2σ) was obtained from the total uncertainty spectrum(σ2 = 

σ𝑎𝑙𝑒𝑎
2  (aleatoric uncertainty) + σ𝑒𝑝𝑖𝑠

2  (epistemic uncertainty) in Figure.1). Then, the uncertainty was 

estimated from the 2SD spectrum also by multiple regression, in which case the metabolite basis set 

was used in absolute mode in accordance with the 2SD spectrum. Finally, the uncertainty was 

converted into the percentage with respect to the metabolite content (%uncertainty) for each metabolite. 

Evaluation of the proposed method: The BCNN was evaluated first on the simulated test 

set and then on the modified in vivo spectra, for which the metabolite content and uncertainty from the 

proposed method were compared with the metabolite content and CRLB from the LCModel.11 

 

RESULTS 

The MAPE of Cr, GSH, Gln, and Tau are < 10%, and the MAPE of Glu, NAA, and mI are < 

5%. For the majority of the metabolites the mean %uncertainty are no less than MAPE (except for 

GPC and Gln) in the simulated test spectra set. For the majority of the metabolites, %uncertainty is 

comparable with MAPE (r ranges from 0.900 (p < 0.001; Gln) to 0.996 (p < 0.001; NAA) 

(0.963±0.034)).  

For modified in vivo spectra, the variation in the estimated metabolite content tends to be 

increasing as the severity of degradation of the spectra increases both BCNN and LCModel analysis. 

However, the extent of variation in the metabolite content tends to be smaller with BCNN than with 

LCModel for all metabolites and both inside and outside the training ranges (or equivalently in the 



normal brain spectra regime) except for mI, for which LCModel outperforms BCNN in the training 

range. For tCr and tNAA, the variation in metabolite content is more highly correlated with CRLB 

from LCModel than with %uncertainty from BCNN (r = 0.910 vs. 0.942 and 0.934 vs. 0.949, 

respectively). Overall, however, there is a trend towards higher r with BCNN than LCM (0.938±0.019 

vs. 0.881±0.057 (p = 0.115)). 

 

DISCUSSION 

The finding that MAPE of Cr, GSH, Gln, Glu, NAA, mI, and Tau on the simulated test spectra 

were ≤ 10% is encouraging. However, the quantification of Ala, GPC, Lac, NAAG, and PC still 

requires far more technical improvement as found also in the previous study.3 Overall, the high 

correlations between the GT errors and BCNN-predicted uncertainty support the potential application 

of the proposed method in DL-MRS with simultaneous uncertainty estimation.  

 

CONCLUSION 

The proposed method may be used for metabolite quantification with simultaneous uncertainty 

estimation in DL-MRS. 
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